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Steady-state exothermic processes in reaction vessels with internal and
external heat transfer are studied for a single reaction with arbitrary
kinetics and an exponential temperature dependence of the reaction
rate constant, The critical values of the dimensionless parameters char-
acteristic of the process are calculated numerically.

When exothermal processes are carried out under
high-temperature conditions, the reaction heat can be
used to good advantage for heating the starting mixture.
Figure 1 shows the schematic diagrams of several ver-
sions of an apparatus for carrying out such processes.
The study will be limited to countercurrent systems,
assuming that both the reaction vessel and the heat ex~
changer operate under ideal displacement conditions,
This model provides a satisfactory description of the
process at high flow rates characteristic of most in-
dustrial processes [1,2]. The problem of designing
such systems has been studied in [8-6]; however, no
analytical solution with the exception of the external
heat exchanger [4] was obtained in these papers, while
in reference [5] the investigation of the stability of the
steady-state conditions of the process was performed
inadequately. An analytical solution to the problem of
determining the steady modes of operation of a reac-
tion vessel with internalheat transfer, for a reaction
of the zero and first order, has been recently obtained
by Zelenyak [7]. The present paper investigates the
steady modes of operation of reaction vessels with in-
ternal and external heat transfer for an arbitrary re-
lation between the reaction rate and reagent concen-
tration.

I. REACTION VESSELS WITH AN INTERNAL HEAT
EXCHANGER

We shall examine a single irreversible exothermic
reaction with a kinetic law of the form:

r=k(T)f(c) = Bexp(—E/RT)  (¢),

where f(c) is an arbitrary concentration function,
which is always greater than 0 when ¢ is greater than
0.* In dimensionless form, the equations of a steady -
state process in a countercurrent apparatus have the
form:**

*If the starting substances are in nonstoichiometric
proportions, this condition is satisfied whenever a
deficiency reagent is taken as the key substance.

**The question of the assumptions conventionally
used in the derivation of these equations, and the de-
rivation itself, are examined in detail in the literature
{see, for example, [2]).

dx

i et @)
Z—Z=5ueef(x)——a(9—71): @)

du ey ®)

The boundary conditions are:

Q) =1, 8(0)=1,(0), 7,()=r1 (4)
Here, the symbols introduced,
L VE(T) (o). 5= heyE _ 4RV
" veC,y ’ yRTg' yod

are dimensionless parameters,

Frank-Kamenetskii's well-known approximating
transformation has been used in the formulation of the
temperature dependence of the reaction rate constant,
This approximation holds for relatively small values
of AT/T, i.e., under conditions in which the thermal
expansion of the flow need not be taken into account.
The system of equations (1)—(3) always has a first in-
tegral expressing the energy conservation law;

§x-0—7 =S8. (5)

By expressing x in (5) through (¢ — 7¢) and introducing
the new variable y = § — 7y, the system can be reduced
to one equation:

AV
f(a—%y) (¥ +ayy =0, (6)

with the boundary conditions
y(0 =0, y (1) :uae‘“f(———a —ay(l) )ey‘”. (7)

From an analysis of the initial system of equations,
itcanbe seenthaty = 6(1 — x) is a monotonicallyincreas-
ing function &, since x(¢) decreases monotonically.

In this case, by the substitution of variables y' = z(y),
Eqg. (6) reduces to a quadrature equation,

After performing certain transformations and in-
tegrating with allowance for the second boundary con-
dition, we get:

se—sds

‘d?yg =eyf<§:~:g);(/7» + a j’“’ T—T)—) - ®
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Fig. 1. Schematic diagrams of several reaction vessel
versions with a counter-current heat exchanger: a) in-
ternal heat exchanger, b) external heat exchanger,

¢) combined heat exchanger.
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Fig. 2. Curves for determining a steady-state
mode of a reaction vessel with an internal (1,
2,3) and a combined (4, 5) heat exchanger for
reactions of various order: 1) zero—order; o=
=2.0, A= 0.25; 2, 3) first-order, 6 =5.0, a =
=08 A=0.1and 56 =5.0, o =10.2, A=10.2,
respectively; 4) zero-order; 5) positive order,
r=1, 6=5.0.
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where gy, =y(1); A=8ne™.
By separating the variables and integrating, we
arrive at a transcendental equation

Yo
ey ~1 ®

)

for determining y. The form of the function ¢ (y,) will
be studied for two possible cases.

1. The function f((6 — y)/8) has no zeros on the right
semiaxis, * while at infinity, it does not decrease fast-
er than exp[—(1 — €)y], where &> 0. In this case, the
function ¢ (y) is defined over the entire right semi-
axis, while for y — « we have:

P (Yo) =

9 yo) > 4,
where
A:( iy - . (10).
D e )

The curve ¢(y) is continuous and must have at least
one maximum, since it can be shown that ¢'(y) < 0 at
sufficiently large y;. If the function ¢(y;) has one max-
imum, then, as can be seen from Fig. 2, for various
values of the parameters o and A, Eq. (9), and hence
the initial system, may have one, two, or no solu-
tions. **

2. The function f{(6 — y)/6) has a zero of p-th order
for y = 6 and has no zeros for y <8, In this case,
function ¢ (y) has a logarithmic singularity at the
point yy = 6 for p = 1, and has no singularity for p < 1.
Depending on the form of the function f((6 — y)/8) over
the interval 0 =y =6 and on the values of the param-
eters A, 8, and ¢, the function ¢(y;) can be expressed
by either curve (curves 2 and 3) in Fig. 2. K should
be noted that in this case, for all parameter values ex-
cept some critical ones, the function ¢'(yy) must have
an even number of zeros, while Eq. (9) must have an
odd number of solutions, The unigueness of a solution
is assured if function ¢(y) increases monotonically.
At least one solution to Eq, (9) will always exist. It
should be noted that a solution which corresponds to
the descending segment of the curve ¢(y) is unstable
from physical considerations (5). The assumption con-
cerning the stability of the solutions that correspond

*It is obvious, however, that for y, > 6 (i.e., x < 0),
the initial system of equations becomes physically
unacceptable, which makes it purposeless to examine
@(5) at yp > 6.

**The absence of a solution to Eq. (9) does not mean
that an actual physical process cannot be steady. It
indicates primarily that the kinetic function in its
adopted form does not hold for small values of x.
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to the ascending segment does not disagree with phys-
ical considerations.

Numerical calculations were performed for several
specific types of kinetic function,

a) Zero-order reaction, In this case f(x) =1 and

Yo
»

@ (40) :Oj

ez tdy o
Ad-a(l+ ey —a(l+ yy)et

Figure 2 shows the curves of function ¢(y;) for the
parameter values @ = 2,0 and A = 0,25, In Fig. 3a, the
critical curves for o and A are plotted in the parameter
plane on the basis of numerical results. They are de~
termined from the condition:

Pmax A =1, A :ylnijg ? Yo 2G) =1.
For ?\(1) < A, Eq. (9) has no solutions; for 7»(2) =X <}\((1:;
there ex1st two solutions, while for A < 7\(2) there ex-
ists a unique solution.

b) First-order reaction. In this case f(x) = x and

Yo

' , e~¥dy )
S

6
Figure 2 shows the curves of function «(yg) (curves 2
and 3) for 6 = 5.0 and various values of o and A. In
Fig. 3b, thecritical curves for o and A are plottedinthe
parameter plane from results of numerical calculation.
They are determined from the conditions

¢ (yo) = (12)

Pmax (}"élr)) =1 Pmin ('\gr)) = L.

The point (¢cy, Acr) is determined from the condition

P (.ycr) =1,
9 (ye) =0,
9 (ye) =0. (13)

In other words, at the point of inflection of function
@(yy), its value must be unity, while its derivative must
be zero. For A > K(li, and A < )\(2) Eq. (12) has one sol-
ution, while for ?\(2) <AL 7\ 1) G P 1t has three solutions.

II. REACTION VESSELS WITH EXTERNAL HEAT EX-
CHANGER

An adiabatic reaction vessel with a countercurrent
heat exchanger, both of ideal displacement, is ex-
amined (Fig. 1b). In dimensionless form, the system
of equations for the steady-state process has the form:

dx

T = — peff(v), (14)
_ZZ = b/ (x), (15)
dr,

d; = 0 (13— Ta)s 16)
41y = a, Ty —Ts). (17)
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Fig. 3. Curves of the critical parameter values for a reaction
vessel with internal heat exchanger: a) for a zero-order reac-
tion, b) for a first-order reaction, 6 = 5; 1) Acp, 2) Aser.
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an external heat exchanger. 1) For a zero-

order reaction; 2) for a reaction of positive
order, r = 1.
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The boundary conditions are

T2J’E11=0 = Tp Tg ’§(=1 == elﬁ:l — ef ;

Hemo=1  Bso = Tole,=1 =0y (18)

The system (14)—(18) has two first integrals which
express the law of conservation of energy in the adia-
batic layer and the heat exchanger:

8 +8 =6+ Oy, (19)
Ty — T, = O — Oy @20)

By expressing x in (19) through (¢ — 6;,) and denoting
6~ 0in=7Y, 0f — 6j = yp, itmay be seenthat obtaining
a steady-state solution from (14) and (15) with allow-
ance for (20) reduces to the solution of the transcen-
dental equation

Yo
plag = n |
s (%)
= Ty + & Yo- 1)

The shape of the function §{y,) will be examined.
As in the preceding problem, two different cases are
possible.

1. The function f((6 — y)/5) has no zeros on the right
semiaxis, and so forth (see the preceding problem).
In this case, function ¥(yg) grows monotonically, while
b4 e~4dy
as yp— =, #{yg)— Ay, where 4, = lnf ‘Su-——f (,5_“_5'> .

]

If, in addition, $"(yo) > 0, * i.e., ¥(y,) is a convex
function, then it hasthe shape shown in Fig. 4 (curve 1),

In this case, for ay < @, Eq. (21) has two solu-
tions, while for @y > agy, it has no solutions.

2. The function f{(5 — y)/5) has a zero of the p-th
order at y = 6, and has no zeros at y < 6. In this case,
function (y;) grows monotonically, has a logarithmic
singularity at point yy = 6 for p = 1, and has no singu-
larities for p < 1. If, in addition, the funetion " (yg)
has a single zero on the segment [0, 6],** then the
function ¥(y,) has the shape shown in Fig. 4 (curve 2},
I can be seen from Fig, 4 that for almost all values of
the parameters oy, A, and 6, except certain critical
ones, Eg. (21) has one or three solutions. As in
the case of an internal heat exchanger, it can be shown
that the steady mode that corresponds to the condition
P'yy) — &y <0 is unstable from physical considerations,
while the stability of the steady modes that correspond
to the condition ¥'(yy) — @y > 0 is physically acceptable.

The following practical examples will be examined:

a) A zero-order reaction. In this case, f(x) =1 and

P o) = In (I — e~wyh, (22)

where A = 6y . Function ¢(yg) has the shape shown in
Fig. 4 (curve 1); here A;= —InA. The relation Aor (@)

*The condition f'(x) < 0, for example, is sufficient for
this to occur.
**The condition f'(x) < 0, f"(x) = 0 is sufficient for
this to occur.

373

can be obtained in explicit form from the condition that
the straight line 7, + a4y, is a tangent to the curve
P(¥y). From here, we get

ay
i ) 23)

9\«cr = A &% = ——_(1 T a})H‘al

The curve of this function is analogous to curve 1 in
Fig. 3. For A < A, there exist two steady-state sol-
utions, while for A > A steady-state solutions do
not exist.

b) A reaction of any positive order of r. In this case,
function f(x) = x*, and

cre

Yo

Y {yy = 1n y ey
[1]

AG—yy (24)

where A= 6T has the shape shown in Fig. 4 (curve
2), the curve ¥(yy) having one point of inflection. The
relation Agp(ey) has the same form as in the case of
an internal heat exchanger (Fig. 3b). The point («
Aer) 18 determined from the conditions:

o=V Wer) V' (Uep) = 0. (25)

This means that « __ is the derivative of the function
¥"(yo) at its point of inflection. For A > 1% and A < A%
there exists a unique solution. For A% < b < AY
there exist three solutions.

cr

I, REACTION VESSEL WITH A COMBINED HEAT
EXCHANGER

In this case, the system of steady-state equations
has the form (see Fig. 1b):

dx

T = —pe?f(x), (26)
%:Maeef(x)-—a(ﬂ—rl), @7)
Z? =a(d—1), (28)
jg —a,(t—1,), 29)
Z; R S— (30)

The boundary conditions are

Memo =1  Tlh—o=0=0; T'm1 = Tolt,m1 = Oip;

Tem0 =Tgi  Toltimt = Ot = 5. 31)

With the aid of the results obtained for the cases
I and II, it can be readily shown that the problem of
solving the system (26)~ (30) reduces to the solution
of the transcendental equation

91 (o) =
o
- | ey -1, (32)
¢ tﬁ) » eTo~ Cito S‘ _seTtds
T
8



374

where A= 0u. As in the problems I and II, two differ-
ent cases are possible:

1) f(‘s—”;ﬁ>¢o and 2) f("l;—i’)zo for y=05.

In case 1), the function ¢,{yp) with a single maximum
has the shape shown in Fig. 2 (curve 4). Hence, for
almost all parameter values except certain critical
ones, the problem has either two or no solutions.

In case 2) the function ¢,(y,) has the shape shown in
Fig. 2 (curve 5). Hence, as a rule, the problem has
one or three solutions.

NOTATION

¢ is the concentration of one of the reagents (taken as the key

reagent); ¢, is the initial concentration; x = ¢/c, is the dimensionless
concentration; r is the reaction rate; E is the activation energy; Tis
the reaction zone temperature; R is the gas constant; Tj is the tem-
perature read-off starting point; T is the temperature of the initial
mixture in the heating zone in an external heat exchanger; T, is the
temperature of the initial mixture in the heating zone of an external
heat exchanger; Tj is the temperature of the hot reacted mixture in
an external heat exchanger; L is the length of the reaction vessel; V
is the volume of the reaction vessel; k(T) is the reaction rate con-
stant; v is the volumetric flow rate; h is the thermal effect of reac-
tion; y is the volumetric heat capacity of the reactive mixture; kp
is the heat transfer coefficient; d is the diameter of heat-exchanger
tubes; £ = /L is the dimensionless coordinate in the reaction vessel,
read from the point of penetration of the mixture into the reaction
zone; &y = 14/ L4 is the dimensionless coordinate in the external heat
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exchanger, read from the point of initial-mixture entrance; 6 =

= E(T — To)/RTS 15 = E(Tj — Tg)/RT: (i = 1,2,3) are the corres-
ponding dimensionless temperatures; o and o; are the dimensionless
heat transfer coefficients in an internal and external heat exchanger,
respectively.
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